NISQ algorithms

Noisy intermediate-scale quantum (NISQ) algorithms

A universal fault-tolerant quantum computer that can solve efficiently problems such as integer factorization and unstructured database search requires millions of qubits with low error rates and long coherence times. While the experimental …

Toward Reliability in the NISQ Era: Robust Interval Guarantee for Quantum Measurements on Approximate States

Quantum computation in noisy, near-term implementations holds promise across multiple domains ranging from chemistry and many-body physics to machine learning, optimization, and finance. However, experimental and algorithmic shortcomings such as …

Meta-Variational Quantum Eigensolver (Meta-VQE): Learning energy profiles of parameterized Hamiltonians for quantum simulation

We present the meta-variational quantum eigensolver (VQE), an algorithm capable of learning the ground-state energy profile of a parameterized Hamiltonian. If the meta-VQE is trained with a few data points, it delivers an initial circuit …

Tequila: A platform for rapid development of quantum algorithms

Variational quantum algorithms are currently the most promising class of algorithms on near-term quantum computers. In contrast to classical algorithms, there are almost no standardized methods yet, and the field continues to evolve rapidly. Similar …

Data re-uploading for a universal quantum classifier

A single qubit provides sufficient computational capabilities to construct a universal quantum classifier when assisted with a classical subroutine. This fact may be surprising since a single qubit only offers a simple superposition of two states and …

Maximal Entanglement: Applications in Quantum Information and Particle Physics

In this PhD thesis, several aspects regarding maximal entanglement are analyzed. In the first chapter, Bell Inequalities are analyzed from an operational perspective as well as novel Bell inequalities are obtained together with their optimal settings …

Exact Ising model simulation on a quantum computer

We present an exact simulation of a one-dimensional transverse Ising spin chain with a quantum computer. We construct an efficient quantum circuit that diagonalizes the Ising Hamiltonian and allows to obtain all eigenstates of the model by just …